VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. III-Semester Main Examinations, Jan./Feb.-2024

Mathematical Programming for Engineers (OE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO/PSO
1.	Illustrate the terms <i>format short</i> and <i>format long</i> MATLAB commands with suitable examples.	2	1	1	2/3
2.	Write the application of whos and clear x y z commands in MATLAB.	2	1	4	3/2
3.	Describe the use of subplot command used in MATLAB.	2	1	2	2/3
4.	With an example explain the procedure to create a function file in MATLAB.	2	1	4	2/2
5.	Write the MATLAB syntax to Differentiate $sin(x)$ with reference to $x = 0$ to $\pi/2$.	2	2	3	2/3
6.	Give the syntax for the evaluation of Numerical Integration using quad and quadl commands.	2	1	4	2/2
7.	What is the Syntax of fzero command? Give an example.	2	1	2	2/3
8.	Mention the use and syntax of command ode23 and explain each parameter.	2	1	4	2/2
9.	If A=[1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8], then what is the of output A(2:3,3:5) and A(:,1:2:5)=[] in MATLAB?	1	2	3	2,5/3
10.	Compare plot and stem commands with appropriated examples.	2	1	1	2/3
	Part-B $(5\times8 = 40 \text{ Marks})$				
11. a)	Assume that array <i>array1</i> is defined as shown and determine the contents of the following sub-arrays:	4	3	1	2,5/2
	$\begin{bmatrix} 1.1 & 0.0 & 2.1 & -3.5 & 6.0 \end{bmatrix}$				
	$ arrayI = \begin{vmatrix} 0.0 & 1.1 & -6.6 & 2.8 & 3.4 \\ 2.1 & 0.1 & 0.3 & -0.4 & 1.3 \end{vmatrix}$				
	$\begin{bmatrix} -1.4 & 5.1 & 0.0 & 1.1 & 0.0 \end{bmatrix}$				
	i) array1(3,:) ii) array1([1 1],:) iii) array1(1:2:3,[3 3 4])				
	iv) Array(:,3:4)=[]				
b)	Discuss if, if-else, nested if structures with an examples in MATLAB.	4	2	3	4,5/2
12. a)	Explain the functionality of the following commands with examples:	4	2	2	2,5/2
	i) fplot ii) loglog iii) bar iv) plotyy v) plot3 vi) surfc vii) title viii) stem	Trong to			

b)	Write a MATLAB Program to plot the following graphs in a continuous way,	4	4	3	3,4,5/3
	i) $e^{-at}(\cos bt + \cos bt^2)$; $0 \le t \le 5$, increment as 0.001				
	ii) $e^{-at} \sin bt$; $0 \le t \le 2$, increment as 0.001				
	A provision is to be given to take the values of a and b as inputs during runtime.				
13. a)	Find Solution using Simpson's 1/3 rd rule 3/8 rule	4	2	4	2,3/3
,	x 1.4 1.6 1.8 2 2.2				
	y 4.0552 4.953 6.0436 7.3891 9.025				
b)	Write short notes on Newton's cotes Rules.		3	1	1,2/3
14. a)	Write a MATLAB program to solve the set of linear system equations using solve and linsolve.	4	2	3	2,3,5/2
18	2x1+3x2-x3=1				
	x1+2x2-x3=4				
	-2x1-x2+x3=-3				
b)	Write a MATLAB program using interp1 for finding linear and spline	3	3	4	2,5/3
	Interpolation of Coarsely Sampled Sine Function, ie $f(x) = \sin(x)$ with $x = 0:pi/4:2*pi$;				
15. a)	Write a MATLAB program for generation of Fibonacci series using for and while loops. Assume the necessary data required.		3	2	2,5/3
b)	What are the debugging methods available in MATLAB and explain them with examples.	4	2	2	2,5/3
16. a)	Solve the given equation $2x^3-4x+1$ using Trapezoidal rule with a=2 and b=4, and Step value (h) = 0.5.	4	2	4	2,5/3
b)	Consider the following set of first order, coupled, nonlinear ODEs.	4	3	3	2,3/3
	$x' = x + y - x(x^2 + y^2)$ $y' = -x + y - y(x^2 + y^2)$				
	Solve this set of equations with the initial conditions $x(0) = 2$ and $y(0) = 2$ over the time interval $0 \le t \le 20$. Plot x vs t and y vs t in two different figures. Use hold on to keep the plots and graph subsequent solutions as overlay plots.	e dig			
17.	Answer any two of the following:				
a)	Discuss about the applications of MATLAB.	4	3	1	1,2/2
b)	Write a script file named sinescries.m that computes the value of sin(x) at a given x using n terms of the series expansion of sine function:	4	3	3	1,3,5/3
	$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!}$				
c)	Write a MATLAB program to solve the set of linear system equations using solve and linsolve.	4	2	3	2,4,5/3
	2x1+3x2-x3=1				
	$x_{1+2}x_{2}-x_{3}=4$				
	-2x1-x2+x3=-3				

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%